Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

نویسندگان

  • Atsushi Sugita
  • Shinji Kawai
  • Tetsuyuki Hayashibara
  • Atsuo Amano
  • Takashi Ooshima
  • Toshimi Michigami
  • Hideki Yoshikawa
  • Toshiyuki Yoneda
چکیده

Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Na+-dependent phosphate transporters in the murine osteoclast: cellular distribution and protein interactions.

We previously demonstrated that inhibition of Na-dependent phosphate (P(i)) transport in osteoclasts led to reduced ATP levels and diminished bone resorption. These findings suggested that Na/P(i) cotransporters in the osteoclast plasma membrane provide P(i) for ATP synthesis and that the osteoclast may utilize part of the P(i) released from bone resorption for this purpose. The present study w...

متن کامل

Phosphate and vascular calcification: Emerging role of the sodium-dependent phosphate co-transporter PiT-1.

Elevated serum phosphate is a risk factor for vascular calcification and cardiovascular events in kidney disease as well as in the general population. Elevated phosphate levels drive vascular calcification, in part, by regulating vascular smooth muscle cell (VSMC) gene expression, function, and fate. The type III sodium-dependent phosphate co-transporter, PiT-1, is necessary for phosphate-induc...

متن کامل

Up-regulation of the Pit-2 phosphate transporter/retrovirus receptor by protein kinase C epsilon.

The membrane receptors for the gibbon ape leukemia retrovirus and the amphotropic murine retrovirus serve normal cellular functions as sodium-dependent phosphate transporters (Pit-1 and Pit-2, respectively). Our earlier studies established that activation of protein kinase C (PKC) by treatment of cells with phorbol 12-myristate 13-acetate (PMA) enhanced sodium-dependent phosphate (Na/Pi) uptake...

متن کامل

Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion.

Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcification and defective insulin secretion. The underlying molecular mechanisms of these complications remain poorly understood. We demonstrated the role of Pi transport across the plasmalemma on Pi toxicity in INS-1E rat clonal β cells and rat pancreatic islet cells. Type III sodium-...

متن کامل

Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification.

Vascular calcification is associated with cardiovascular morbidity and mortality. Hyperphosphatemia is an important contributor to vascular calcification. Our previous studies demonstrated that elevated phosphate induces calcification of smooth muscle cells (SMC) in vitro. Inhibition of phosphate transport by phosphonoformic acid blocked phosphate-induced calcification, implicating sodium-depen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 4  شماره 

صفحات  -

تاریخ انتشار 2011